CS61C: Belief, Buffers &

§ Pointers

CS61C Fall2007 - Discussion #3
Greg Gibeling

9/11/2007 CS61C Discussion #3 1

“%g‘ Stump the TA

= Goal
= A problem Greg can't solve
= A question Greg can't answer
= Rules
= No deliberate obfuscation
= The problem/question may be complex
= Your explanation of it must be as clear as possible
= No detailed reference information

= I'm not going to spend 20 minutes looking up Ann
Margaret’s pant size

9/11/2007 CS61C Discussion #3 2

E Course Newsgroup

= Access
= news.berkeley.edu from “on campus”
= authnews.berkeley.edu from home
= Login using your CalNET ID
= Requries SSL
= Update your Gecos information
= Use your real name not “Class Account”
= finger | grep <login>
= ssh update

9/11/2007 CS61C Discussion #3 3

- Belief & Debugging (1)

= Questions
= Are you religious? (Don't answer out loud)

= Do your beliefs (or lack thereof) affect your
performance & abilities in this class?

9/11/2007 CS61C Discussion #3 4

E Belief & Debugging (2)

= Answers
= Are you religious? (Don't answer out loud)
» It was a trick question
=« It doesn't really matter
= Do your beliefs (or lack thereof) affect your
performance & abilities in this class?

= Your beliefs affect everything you do,
particularly when you're debugging

= We'll talk about how in a minute...

9/11/2007 CS61C Discussion #3 5

i §§| Belief & Debugging (3)

= Questions

= When you run a program and it doesn't
work as expected, what's next?

= Are you afraid to answer because I tricked
you last time?

9/11/2007 CS61C Discussion #3 6

Belief & Debugging (4)

= Questions
= When you run a program and it doesn't work as
expected, what's next?
= Most people would say “debugging”
= Shouldn't you stop to wonder about your expectations
before you blame the program?
= Are you afraid to answer because I tricked you
last time?
= This is good!
= You are questioning yourself...

9/11/2007 CS61C Discussion #3 7

Belief & Debugging (5)

= Belief: You believe you know what your program
does
= You think you understand it
= You think you know what the library calls do
= Fact: You can read what it actually does
= Computers are as close to perfect as possible
= A computer error or fault is very unlikely
= Consequence
= A mismatch means your beliefs are wrong
= Always assume that you are dead wrong
=« It's possible the bug is a typo

9/11/2007 CS61C Discussion #3 8

Buffer Overflows (1)

= Buffer Overflow
= Write n+x bytes to an n byte buffer
= Results in crash (we hope)
= Common causes
= Fixed length buffers
= Off-by-one errors
= Misplaced belief
= Fixes

= Use strncpy
= Don't forget to worry about concurrency
= Always validate all arguments

9/11/2007 CS61C Discussion #3 9

Buffer Overflows (2)

= An example with strncpy
void foo(char* string) {
int length = strlen(string);
char* buffer = (char*)malloc((length+1)*sizeof(char));
strncpy(buffer, string, length);
/] etc...

= A bug in dirmain.c
char cmd[6];
// etc...
sscanf(line, “%6s”, cmd);

= Why doesn't this work?
= Why didn't we notice this until yesteday?

9/11/2007 CS61C Discussion #3 10

Buffer Overflows (3)

= Who cares?

= Every employer you will ever interview with

« Buffer Overflows are one of the largest sources
of software cracks ever

= Visual Studio issues warnings for use of strcpy!
= You
=« Countless student hours wasted on debugging

= No one is immune, our code contained an
error!

9/11/2007 CS61C Discussion #3 11

A Smarter Free

= The macro
#define FREE(x) { if (x) free(x); x = NULL; }
= Cheap, easy to remember and use
= Prevents all kinds of errors (double free() calls)
= The function
void FREE(void**x) {
if (x) { if (*x) free(*x); (*x) = NULL; }

= A little more expensive (maybe)
= More versatile

= When don't these work?
= Why aren't they always a good idea?

9/11/2007 CS61C Discussion #3 12

Quiz3

/%

Return the result of appending the characters in s2 to sl.
Assumption: enough space has been allocated for sl to store
the extra characters.

char* append (char sl[], char s2[1) {
int sllen = strlen (sl);

1)
2)
3)
4)
5) */
6)
7) =
8) int s2len = strlen (s2);

9) int k;

10) for (k=0; k<=s2len; k++) {

11) slfk+sllen] = s2[k];

12)

13) return sl;

14) }

9/11/2007 CS61C Discussion #3 13

Quiz4

#include <stdio.h>
struct point {

int x;

int y;

struct point* scanpoint() {

struct point *temp = new point;

scanf ("%d %d", &(temp->x), &(temp->y));
9) return temp;

10) }

0)
1)
2)
3)
4) };
5)
6)
7))
8)

12) void main() {
13) struct point p = scanpoint() ;
14) printf("sd %d", p->x, p->y);

9/11/2007 CS61C Discussion #3

Quiz5

= For each of the following kinds of data
= List all possible storage locations
= The Stack
= The Heap
« Static Storage
= None of the above
Temporary variables
Function arguments
A global variable
A linked list

= What will foo () return?
char bar(int *p) { int b; return (sb < p) 2 't' : '£'; }
char foo() { int a; return bar(sa); }

9/11/2007 CS61C Discussion #3 15

All Kinds of Zeros

= Not my IQ
= Kinds of Zeros
= NULL — for pointers
= 0 — for integers
= 0.0 — for floating point
= “\0’ —for characters
n Why
= So that your code is readable
= NULL might not always be zero!

9/11/2007 CS61C Discussion #3

