
1

9/11/2007 CS61C Discussion #3 1

CS61C: Belief, Buffers &
Pointers

CS61C Fall2007 - Discussion #3

Greg Gibeling

9/11/2007 CS61C Discussion #3 2

Stump the TA

� Goal
� A problem Greg can’t solve

� A question Greg can’t answer

� Rules
� No deliberate obfuscation

� The problem/question may be complex

� Your explanation of it must be as clear as possible

� No detailed reference information
� I’m not going to spend 20 minutes looking up Ann

Margaret’s pant size

9/11/2007 CS61C Discussion #3 3

Course Newsgroup

� Access

� news.berkeley.edu from “on campus”

� authnews.berkeley.edu from home

� Login using your CalNET ID

� Requries SSL

� Update your Gecos information

� Use your real name not “Class Account”

� finger | grep <login>

� ssh update

9/11/2007 CS61C Discussion #3 4

Belief & Debugging (1)

� Questions

� Are you religious? (Don’t answer out loud)

� Do your beliefs (or lack thereof) affect your
performance & abilities in this class?

9/11/2007 CS61C Discussion #3 5

Belief & Debugging (2)

� Answers
� Are you religious? (Don’t answer out loud)

� It was a trick question

� It doesn’t really matter

� Do your beliefs (or lack thereof) affect your
performance & abilities in this class?

� Your beliefs affect everything you do,
particularly when you're debugging

� We’ll talk about how in a minute…

9/11/2007 CS61C Discussion #3 6

Belief & Debugging (3)

� Questions

� When you run a program and it doesn't
work as expected, what's next?

� Are you afraid to answer because I tricked

you last time?

2

9/11/2007 CS61C Discussion #3 7

Belief & Debugging (4)

� Questions

� When you run a program and it doesn't work as
expected, what's next?

� Most people would say “debugging”

� Shouldn’t you stop to wonder about your expectations
before you blame the program?

� Are you afraid to answer because I tricked you
last time?

� This is good!

� You are questioning yourself…

9/11/2007 CS61C Discussion #3 8

Belief & Debugging (5)

� Belief: You believe you know what your program
does
� You think you understand it

� You think you know what the library calls do

� Fact: You can read what it actually does
� Computers are as close to perfect as possible

� A computer error or fault is very unlikely

� Consequence
� A mismatch means your beliefs are wrong

� Always assume that you are dead wrong
� It's possible the bug is a typo

9/11/2007 CS61C Discussion #3 9

Buffer Overflows (1)

� Buffer Overflow
� Write n+x bytes to an n byte buffer

� Results in crash (we hope)

� Common causes
� Fixed length buffers

� Off-by-one errors

� Misplaced belief

� Fixes
� Use strncpy

� Don’t forget to worry about concurrency

� Always validate all arguments

9/11/2007 CS61C Discussion #3 10

Buffer Overflows (2)

� An example with strncpy
void foo(char* string) {

int length = strlen(string);
char* buffer = (char*)malloc((length+1)*sizeof(char));
strncpy(buffer, string, length);
// etc…

}

� A bug in dirmain.c
char cmd[6];
// etc…
sscanf(line, “%6s”, cmd);

� Why doesn’t this work?
� Why didn’t we notice this until yesteday?

9/11/2007 CS61C Discussion #3 11

Buffer Overflows (3)

� Who cares?

� Every employer you will ever interview with

� Buffer Overflows are one of the largest sources
of software cracks ever

� Visual Studio issues warnings for use of strcpy!

� You

� Countless student hours wasted on debugging

� No one is immune, our code contained an
error!

9/11/2007 CS61C Discussion #3 12

A Smarter Free

� The macro
#define FREE(x) { if (x) free(x); x = NULL; }

� Cheap, easy to remember and use

� Prevents all kinds of errors (double free() calls)

� The function
void FREE(void**x) {

if (x) { if (*x) free(*x); (*x) = NULL; }

}

� A little more expensive (maybe)

� More versatile

� When don’t these work?

� Why aren’t they always a good idea?

3

9/11/2007 CS61C Discussion #3 13

Quiz3
1) /*

2) Return the result of appending the characters in s2 to s1.

3) Assumption: enough space has been allocated for s1 to store

4) the extra characters.

5) */

6) char* append (char s1[], char s2[]) {

7) int s1len = strlen (s1);

8) int s2len = strlen (s2);

9) int k;

10) for (k=0; k<=s2len; k++) {

11) s1[k+s1len] = s2[k];

12) }

13) return s1;

14) }

9/11/2007 CS61C Discussion #3 14

Quiz4

0) #include <stdio.h>

1) struct point {

2) int x;

3) int y;

4) };

5)

6) struct point* scanpoint() {

7) struct point *temp = new point;

8) scanf("%d %d", &(temp->x), &(temp->y));

9) return temp;

10) }

11)

12) void main() {

13) struct point p = scanpoint();

14) printf("%d %d", p->x, p->y);

15) }

9/11/2007 CS61C Discussion #3 15

Quiz5

� For each of the following kinds of data
� List all possible storage locations

� The Stack
� The Heap
� Static Storage
� None of the above

� Temporary variables
� Function arguments
� A global variable
� A linked list

� What will foo() return?
char bar(int *p) { int b; return (&b < p) ? 't' : 'f'; }

char foo() { int a; return bar(&a); }

9/11/2007 CS61C Discussion #3 16

All Kinds of Zeros

� Not my IQ

� Kinds of Zeros
� NULL – for pointers

� 0 – for integers

� 0.0 – for floating point

� ‘\0’ – for characters

� Why
� So that your code is readable

� NULL might not always be zero!

